Call Us:1.800.561.4019
Basically, a firewall monitors incoming and outgoing network traffic and based on a defined set of security rules the firewall decides whether to allow or block specific traffic. Firewalls establish a barrier, or "firewall," between a trusted network and an untrusted network, typically on critical links like the Internet.
The main purpose of a firewall is to prevent attacks on a private network, allowing you to monitor the security of your network, when alerting suspicious activity occurs. The firewall also helps control the use of the Internet, blocking inappropriate or unblocking appropriate material, while monitoring services using WWW (World Wide Web), FTP (File Transfer Protocol), as well as other protocols.
Bottom line, the firewall prevents unauthorized access to your network, protecting your data from being compromised and is considered a bedrock of IT security stacks along with Intrusion Prevention System (IPS) and Security Information and Event Management (SIEM). Here we want to review which firewall you may need to deploy and best practices for managing availability of inline firewalls.
Network-based firewalls are used strategically within a LAN or WAN. These are either a purpose-built hardware firewall appliance, a firewall software run within general-purpose hardware like a server, or virtual firewalls run off a virtual host hypervisor.
Host-based firewalls, deployed directly on the host itself, control network traffic within an operating system or an agent application for protection.
From network-based and host-based firewalls there are a growing number of network firewall evolutions that have emerged in the past 25 years, you may be familiar with:
Packet filtering firewalls are efficient at processing packets and are known for enabling complex security policies. These firewalls cannot filter at the application layer, can be complex to configure and are vulnerable to spoofing attacks.
Stateful inspection firewalls have the capability to block attacks aimed at protocol gateway exploits and denial-of-service attacks (DDoS), can reduce the attack service, by operating with fewer open ports and tend to offer more security than either packet filtering. These firewalls tend to not be effective against stateless protocols and are known to affect network performance.
Application layer filtering processes applications and protocols such as File Transfer Protocol (FTP), Domain Name System (DNS), or Hypertext Transfer Protocol (HTTP), allowing it to identify unwanted applications. Application layer gateways filters provide good data security and are used to obscure private network details, but can be complex to configure and can affect network performance with high processing overhead.
NGFWs combine standard stateful inspection firewall capabilities with intrusion detection/prevention, deep packet inspection and malware filtering providing advanced protection and are capable of monitoring network protocols from layer 2 through the application layer 7. Consolidation of disparate security functions are known to create a possible point of failure and are known to be complex and process intensive.
Other types of firewalls include, Circuit-level gateway firewalls, which are used to quickly identify malicious content, monitoring TCP handshakes and other network protocol sessions, and Unified threat management (UTM) firewall's typically combine the functions of a stateful inspection firewall with intrusion prevention and antivirus.
Inline Lifecycle Management (ILM) is the strategy of managing your firewall's availability — ultimately providing operational isolation by expedited problem resolution of unplanned downtime without impacting network connectivity. ILM allows you to easily take the firewall out-of-band for updates, installing patches, performing maintenance or troubleshooting to optimize and validate before pushing back inline.
As inline firewalls sit between network segments, managing the risk of downtime is a critical consideration when deploying these solutions. Downtime, whether planned or unplanned, can not only impact the functionality of the network but also impacts reputation and lost revenue to the company.
IT teams commonly face downtime:
External bypass TAPs provide three resilient technologies to combat unplanned network downtime for inline firewalls, network failsafe, heartbeat technology and remote management.
Failsafe ensures the bypass TAP itself, and by extension the firewall, doesn't become a single point of failure. If the bypass TAP loses power or were to fail, fail-safe technology simply triggers the network ports to bypass the TAP and connected firewall keeping the network up, or automatically triggering a redundant High Availability (HA) solution.
Heartbeat packets monitor the health of the firewall. Instead of relying on the direct connectivity of the network to the tool, the bypass TAP is purpose-built, designed specifically to pass heartbeat packets back and forth to detect an issue with the connected appliance. If the heartbeat sent from the TAP is not received back, indicating the device is offline, the TAP will automatically bypass the firewall, keeping the network up even though the device is offline. No network downtime. No single point of failure.
Remote Management enables direct interaction with bypass TAPs to manage inline security device lifecycle. With API level access, remote management of inline devices can be automated and scaled across dozens/hundreds of remote locations. This enables NetOps teams to quickly patch and upgrade critical appliances while maintaining remote connectivity to all remote locations.
Planned downtime also impacts network operations. External bypass TAPs provide administrative isolation, leading to no or minimal maintenance windows. Utilizing an external Bypass TAP offers the unique ability to implement inline lifecycle management for updates, installing patches, performing maintenance or troubleshooting.
A Bypass TAP has quickly become the essential complement to any inline tool, especially firewalls. Looking to add a bypass solution to your firewall deployment, but not sure where to start? Join us for a brief network Design-IT consultation or demo.
When you subscribe to the blog, we will send you an e-mail when there are new updates on the site so you wouldn't miss them.
Comments