Network Visibility: Security Applications of Network TAPs, Brokers and Bypass Switches

Security starts with awareness, but what happens when critical traffic slips through unnoticed? For security teams and network administrators alike, network visibility isn’t just a luxury—it’s a necessity. As threats become more sophisticated, ensuring complete, real-time access to network traffic is the first step in defending against malicious activity. This is where technologies like Network TAPs, Network Packet Brokers, and Bypass Switches come into play.

What is Network Visibility?

Network visibility refers to the ability to monitor all traffic flowing across a network—north-south (between users and data centers) and east-west (between internal systems, users and endpoints). Without it, blind spots emerge, leaving room for attackers to move undetected.

Visibility tools like Network TAPs (Test Access Points), Network Packet Brokers (NPBs), and Bypass Switches are the foundation for building a resilient, secure, and high-performance network. Each plays a unique role in feeding security appliances the data they need to function effectively.

Network TAPs: Your First Line of Insight

Network TAPs (Test Access Points) are dedicated hardware devices designed to deliver a real-time, unfiltered copy of network traffic. Placed in-line between network segments, TAPs allow all data to flow through uninterrupted while simultaneously duplicating that traffic for monitoring and security tools. Unlike other methods that may filter or miss packets under load, TAPs provide a complete and accurate view of every packet traversing the network—ensuring your tools receive 100% of the data, with zero interference, loss, or blind spots.

Security Use Cases:

Intrusion Detection Systems (IDS) rely on clean, complete traffic to detect anomalies.

Forensics and packet capture solutions use TAPs to store traffic for analysis after an incident.

Decryption appliances can tap into SSL/TLS sessions for deep inspection.

Network TAPs are available from vendors like Garland Technology, Cubro, Profitap and Keysight.

Network Packet Brokers: Smart Traffic Management

Gaining visibility is just the first step—managing that traffic effectively is where the real challenge begins. This is where Network Packet Brokers (NPBs) come into play. These smart, purpose-built devices aggregate traffic from multiple sources, then filter, de-duplicate, and reformat it before sending it to your security and monitoring tools. 

By delivering only the relevant data in the optimal format, NPBs reduce tool overload, eliminate unnecessary noise, and ensure that each system receives precisely what it needs to operate at peak efficiency.

Security Use Cases:

Traffic filtering: Send only relevant data to specific security appliances to reduce overload. 

Load balancing: Distribute traffic across multiple tools for redundancy and scalability. 

Packet deduplication and header stripping: Eliminate noise and unnecessary metadata that can bog down inspection.

Bypass Switches: High Availability for In-line Security

Bypass Switches, unlike TAPs and Network Packet Brokers, are purpose-built for in-line security tools—such as firewalls, intrusion prevention systems (IPS), and secure web gateways—that actively inspect and control live traffic. Because these tools sit directly in the path of network data, any failure or maintenance downtime can disrupt the flow of traffic and impact availability. Bypass switches solve this challenge by intelligently redirecting traffic around the in-line device if it becomes unresponsive or needs to be taken offline. This ensures continuous uptime, minimizes risk, and allows security teams to maintain and upgrade in-line defenses without interrupting business operations.

Security Use Cases:

Fail-safe failover: If an in-line appliance fails or is taken down for maintenance, bypass switches keep traffic flowing uninterrupted.

Heartbeat monitoring: Ensure that in-line tools are healthy and responsive.

Scheduled updates and maintenance windows: Perform patching or upgrades without interrupting traffic.

The Power of an Integrated Visibility Fabric

Individually, TAPs, Brokers, and Bypass Switches solve specific problems. Together, they form a visibility fabric—a unified, scalable approach to traffic monitoring that supports both performance and security initiatives.

If you’re struggling with visibility gaps or underperforming security tools, it’s time to rethink your monitoring strategy. Contact the Telnet Networks sales team to learn how we can help you deploy the right mix of Network TAPs, Network Packet Brokers, and Bypass Switches  from market leading and innovative partners like Garland Technology, Cubro, Profitap and Keysight to secure your infrastructure from the ground up.

OT Security: Establish a Visibility Foundation with Network Taps

Is your OT network secure enough?

As the reliance on interconnected systems for critical operations grows, the security of Operational Technology (OT) networks becomes increasingly crucial. Traditional monitoring methods like SPAN ports often fall short, leaving your network exposed to vulnerabilities.

Discover how Cubro network TAPs can be the cornerstone of a secure and reliable OT network infrastructure.

This webinar will enhance your understanding of how network TAPs can play a critical role in securing OT networks. You’ll learn about the limitations of SPAN ports and the significant advantages of using Cubro network TAPs. By the end of the session, you’ll have a clear understanding of why network TAPs are essential for robust OT security.

Key Takeaways

  • Introduction to Network TAPs: Discover what network TAPs are, how they function, and why they are vital for monitoring and securing network traffic without impacting performance.
  • Advantages of Network TAPs: Learn about the benefits of using network TAPs over traditional monitoring methods, including improved visibility, reliability, and security.
  • OT Network Security Challenges: Understand the unique security challenges OT networks face and how network TAPs can address these issues by providing real-time, unobstructed access to network data.
  • Best Practices for Implementation: Gain insights into best practices for deploying network TAPs within OT environments to maximize effectiveness and ensure comprehensive network security.

Don’t Be Lulled to Sleep with a Security Fable. . .

Once upon a time, all you needed was a firewall to call yourself “secure.” But then, things changed. More networks are created every day, every network is visible to the others, and they connect with each other all the time—no matter how far away or how unrelated.

And malicious threats have taken notice . . .

As the Internet got bigger, anonymity got smaller. It’s impossible to go “unnoticed” on the Internet now. Everybody is a target.

Into today’s network landscape, every network is under the threat of attack all the time. In reaction to threats, the network “security perimeter” has expanded in reaction to new attacks, new breeds of hackers, more regions coming online, and emerging regulations.

Security innovation tracks threat innovation by creating more protection—but this comes with more complexity, more maintenance, and more to manage. Security investment rises with expanding requirements. Just a firewall doesn’t nearly cut it anymore.

Next-generation firewalls, IPS/IDS, antivirus software, SIEM, sandboxing, DPI: all of these tools have become part of the security perimeter in an effort to stop traffic from getting in (and out) of your network. And they are overloaded, and overloading your security teams.

In 2014, there were close to 42.8 million cyberattacks (roughly 117,339 attacks each day) in the United States alone. These days, the average North American enterprise fields around 10,000 alerts each day from its security systems—way more than their IT teams can possibly process—a Damballa analysis of traffic found.

Your network’s current attack surface is huge. It is the sum of every access avenue an attacker could use to enter your network (or take data out of your network). Basically, every connection to and/or from anywhere.

There are two types of traffic that hit every network: The traffic worth analyzing for threats, and the traffic not worth analyzing for threats that should be blocked immediately before any security resource is wasted inspecting or following up on it.

Any way to filter out traffic that is either known to be good or known to be bad, and doesn’t need to go through the security system screening, reduces the load on your security staff. With a reduced attack surface, your security resources can focus on a much tighter band of information, and not get distracted by non-threatening (or obviously threatening) noise.

Thanks to Ixia for the article.

Don’t Miss the Forest for the Trees: Taps vs. SPAN

These days, your network is as important to your business as any other item—including your products. Whether your customers are internal or external, you need a dependable and secure network that grows with your business. Without one, you are dead in the water.

IT managers have a nearly impossible job. They must understand, manage, and secure the network all the time against all problems. Anything less than a 100 percent working network is a failure. There is a very familiar saying: Don’t miss the forest for the trees. Meaning don’t let the details prevent you from seeing the big picture. But what if the details ARE the big picture?

Today’s IT managers can’t miss the forest OR the trees!

Network visibility is a prime tool in properly monitoring your network. You need an end-to-end visibility architecture to truly see your network. This visibility architecture must reveal both the big picture and the smallest details to present a true view of what is happening in the network.

The first building-block to your visibility architecture is access to the data. To efficiently monitor a network, you must have complete visibility into that network. This means being able to reliably capture 100% of the network traffic under all network conditions.

To achieve this, devices need to be installed into the network to capture that data using “taps” or Switch Port Analyzers (SPANs).

A tap is a passive splitting mechanism placed between two network devices. It provides a monitoring connection. Using taps, you can easily connect monitoring devices such as protocol analyzers, RMON probes and intrusion detection and prevention systems to the network. The tap duplicates all traffic on the link and forwards this to the monitoring device. Any monitoring device connected to a tap receives the same traffic as if it were in-line. This includes all errors. Taps do not introduce delay, or alter the content or structure of the data. They also fail open so that traffic continues to flow between network devices, even if you remove a monitoring device or power to the device is lost.

A SPAN port – also known as a mirroring port – is a function of one or more ports on a switch in the network. Like a tap, monitoring devices can also be attached to this SPAN port.

So what are the advantages of taps vs SPAN?

  • A tap captures everything on the wire, including MAC and media errors. A SPAN port will drop those packets.
  • A tap is unaffected by bandwidth saturation. A SPAN port cannot handle heavily used full-duplex links without dropping packets.
  • A tap is simple to install. A SPAN port requires an engineer to configure the switch or switches.
  • A tap is not an addressable network device. It cannot be hacked. SPAN ports leave you vulnerable.
  • A tap doesn’t require you to dedicate a switch port to monitoring. It frees the monitoring port up for switching traffic.

Don’t Miss the Forest for the Trees: Taps vs. SPAN

Thanks to Ixia for the article.

Ixia Taps into Visibility, Access and Security in 4G/LTE

The Growing Impact of Social Networking Trends on Lawful Interception

Lawful Interception (LI) is the legal process by which a communications network operator or Service Provider (SP) gives authorized officials access to the communications of individuals or organizations. With security threats mushrooming in new directions, LI is more than ever a priority and major focus of Law Enforcement Agencies (LEAs). Regulations such as the Communications Assistance for Law Enforcement Act (CALEA), mandate that SPs place their resources at the service of these agencies to support surveillance and interdiction of individuals or groups.

CALEA makes Lawful Interception a priority mission for Service Providers as well as LEA; its requirements make unique demands and mandate specific equipment to carry out its high-stakes activities. This paper explores requirements and new solutions for Service Provider networks in performing Lawful Interception.

A Fast-Changing Environment Opens New Doors to Terrorism and Crime

In the past, Lawful Interception was simpler and more straightforward because it was confined to traditional voice traffic. Even in the earlier days of the Internet, it was still possible to intercept a target’s communication data fairly easily.

Now, as electronic communications take on new forms and broaden to a potential audience of billions, data volumes are soaring, and the array of service offerings is growing apace. Lawful Interception Agencies and Service Providers are racing to thwart terrorists and other criminals who have the technological expertise and determination to carry out their agendas and evade capture. This challenge will only intensify with the rising momentum of change in communication patterns.

Traffic patterns have changed: In the past it was easier to identify peer-to-peer applications or chat using well known port numbers. In order to evade LI systems, the bad guys had to work harder. Nowadays, most applications use Ixia Taps into Visibility, Access and Security in 4G/LTE standard HTTP and in most cases SSL to communicate. This puts an extra burden on LI systems that must identify overall more targets on larger volumes of data with fewer filtering options.

Social Networking in particular is pushing usage to exponential levels, and today’s lawbreakers have a growing range of sophisticated, encrypted communication channels to exploit. With the stakes so much higher, Service Providers need robust, innovative resources that can contend with a widening field of threats. This interception technology must be able to collect volume traffic and handle data at unprecedented high speeds and with pinpoint security and reliability.

LI Strategies and Goals May Vary, but Requirements Remain Consistent

Today, some countries are using nationwide interception systems while others only dictate policies that providers need to follow. While regulations and requirements vary from country to country, organizations such as the European Telecommunications Standards Institute (ETSI) and the American National Standards Institute (ANSI) have developed technical parameters for LI to facilitate the work of LEAs. The main functions of any LI solution are to access Interception-Related Information (IRI) and Content of Communication (CC) from the telecommunications network and to deliver that information in a standardized format via the handover interface to one or more monitoring centers of law enforcement agencies.

High-performance switching capabilities, such as those offered by the Ixia Director™ family of solutions, should map to following LI standards in order to be effective: They must be able to isolate suspicious voice, video, or data streams for an interception, based on IP address, MAC address or other parameters. The device must also be able to carry out filtering at wire speed. Requirements for supporting Lawful Interception activities include:

  • The ability to intercept all applicable communications of a certain target without gaps in coverage, including dropped packets, where missing encrypted characters may render a message unreadable or incomplete
  • Total visibility into network traffic at any point in the communication stream
  • Adequate processing speed to match network bandwidth
  • Undetectability, unobtrusiveness, and lack of performance degradation (a red flag to criminals and terrorists on alert for signs that they have been intercepted)
  • Real-time monitoring capabilities, because time is of the essence in preventing a crime or attack and in gathering evidence
  • The ability to provide intercepted information to the authorities in the agreed-upon handoff format
  • Load sharing and balancing of traffic that is handed to the LI system .

From the perspective of the network operator or Service Provider, the primary obligations and requirements for developing and deploying a lawful interception solution include:

  • Cost-effectiveness
  • Minimal impact on network infrastructure
  • Compatibility and compliance
  • Support for future technologies
  • Reliability and security

Ixia’s Comprehensive Range of Solutions for Lawful Interception

This Ixia customer, (the “Service Provider”), is a 4G/LTE pioneer that relies on Ixia solutions. Ixia serves the LI architecture by providing the access part of an LI solution in the form of Taps and switches. These contribute functional flexibility and can be configured as needed in many settings. Both the Ixia Director solution family and the iLink Agg™ solution can aggregate a group of links in traffic and pick out conversations with the same IP address pair from any of the links.

Following are further examples of Ixia products that can form a vital element of a successful LI initiative:

Test access ports, or Taps, are devices used by carriers and others to meet the capability requirements of CALEA legislation. Ixia is a global leader in the range and capabilities of its Taps, which provide permanent, passive access points to the physical stream.

Ixia Taps reside in both carrier and enterprise infrastructures to perform network monitoring and to improve both network security and efficiency. These inline devices provide permanent, passive access points to the physical stream. The passive characteristic of Taps means that network data is not affected whether the Tap is powered or not. As part of an LI solution, Taps have proven more useful than Span ports. If Law Enforcement Agencies must reconfigure a switch to send the right conversations to the Span port every time intercept is required, a risk arises of misconfiguring the switch and connections. Also, Span ports drop packets—another significant monitoring risk, particularly in encryption.

Director xStream™ and iLink Agg xStream™ enable deployment of an intelligent, flexible and efficient monitoring access platform for 10G networks. Director xStream’s unique TapFlow™ filtering technology enables LI to focus on select traffic of interest for each tool based on protocols, IP addresses, ports, and VLANs. The robust engineering of Director xStream and iLink Agg xStream enables a pool of 10G and 1G tools to be deployed across a large number of 10G network links, with remote, centralized control of exactly which traffic streams are directed to each tool. Ixia xStream solutions enable law enforcement entities to view more traffic with fewer monitoring tools as well as relieving oversubscribed 10G monitoring tools. In addition, law enforcement entities can share tools and data access among groups without contention and centralize data monitoring in a network operations center.

Director Pro™ and Director xStream Pro data monitoring switches offers law enforcement the ability to perform better pre-filtering via Deep Packet Inspection (DPI) and to hone in on a specific phone number or credit card number. Those products differs from other platforms that might have the ability to seek data within portions of the packet thanks to a unique ability to filter content or perform pattern matching with hardware and in wire speed potentially to Layer 7. Such DPI provides the ability to apply filters to a packet or multiple packets at any location, regardless of packet length or how “deep” the packet is; or to the location of the data to be matched within this packet. A DPI system is totally independent of the packet.

Thanks to Ixia for the article.

Ixia Taps into Hybrid Cloud Visibility

One of the major issues that IT organizations have with any form of external cloud computing is that they don’t have much visibility into what is occurring within any of those environments.

To help address that specific issue, Ixia created its Net Tool Optimizer, which makes use of virtual and physical taps to provide visibility into cloud computing environments. Now via the latest upgrade to that software, Ixia is providing support for both virtual and physical networks while doubling the number of interconnects the hardware upon which Net Tool Optimizer runs can support.

Deepesh Arora, vice president of product management for Ixia, says providing real-time visibility into both virtual and physical networks is critical, because in the age of the cloud, the number of virtual networks being employed has expanded considerably. For many IT organizations, this means they have no visibility into either the external cloud or the virtual networks that are being used to connect them.

The end goal, says Arora, should be to use Net Tool Optimizer to predict what will occur across those hybrid cloud computing environments, but also to enable IT organizations to use that data to programmatically automate responses to changes in those environments.

Most IT organizations find managing the network inside the data center to be challenging enough. With the additional of virtual networks that span multiple cloud computing environments running inside and outside of the data center, that job is more difficult than ever. Of course, no one can manage what they can’t measure, so the first step toward gaining visibility into hybrid cloud computing environments starts with something as comparatively simple as a virtual network tap.

Thanks to IT Business Edge for the article.

Campus to Cloud Network Visibility

Visibility. Network visibility. Simple terms that are thrown around quite a bit today. But the reality isn’t quite so simple. Why?

Scale for one. It’s simple to maintain visibility for a small network. But large corporate or enterprise networks? That’s another story altogether. Visibility solutions for these large networks have to scale from one end of the network to the other end – from the campus and branch office edge to the data center and/or private cloud. Managing and troubleshooting performance issues demands that we maintain visibility from the user to application and every step or hop in between.

So deploying a visibility architecture or design from campus to cloud requires scale. When I say scale, I mean scale on multiple layers – 5 layers to be exact – product, portfolio, design, management, and support. Let’s look at each one briefly.

Product Scale

Building an end-to-end visibility architecture for an enterprise network requires products that can scale to the total aggregate traffic from across the entire network, and filter that traffic for distribution to the appropriate monitoring and visibility tools. This specifically refers to network packet brokers that can aggregate traffic from 1GE, 10GE, 40GE, and even 100GE links. But it is more than just I/O. These network packet brokers have to have capacity that scales – meaning they have to operate at wire rate – and provide a completely non-blocking architecture whether they exist in a fixed port configuration or a modular- or chassis-based configuration.

Portfolio Scale

Building an end-to-end visibility architecture for an enterprise network also requires a portfolio that can scale. This means a full portfolio selection of network taps, virtual taps, inline bypass switches, out-of-band network packet brokers, inline network packet brokers, and management. Without these necessary components, your designs are limited and your future flexibility is limited.

Design Scale

Building an end-to-end visibility architecture for an enterprise network also requires a set of reference designs or frameworks that can scale. IT organizations expect their partners to provide solutions and not simply product – partners that can provide architectures or design frameworks that solve the most pressing challenges that IT is grappling with on a regular basis.

Management Scale

Building an end-to-end visibility architecture for an enterprise network requires management scale. Management scale is pretty much self-explanatory – a management solution that can manage the entire portfolio of products used in the overall design framework. However, it goes beyond that. Management requires integration. Look for designs that can also integrate easily into existing data center management infrastructures. Look for designs that allow automated service or application provisioning. Automation can really help to provide management scalability.

Support Scale

Building and supporting an end-to-end visibility architecture for an enterprise network requires support services that scale, both in skills sets and geography. Skill sets implies that deployment services and technical support personnel understand more than simply product, but that they understand the environments in which these visibility architectures operate as well. And obviously support services must be 24 x 7 and cover deployments globally.

So, if you’re looking to build an end-to-end visibility solution for your enterprise network, consider the scalability of the solution you’re considering. Consider scale in every sense of the word, not simply product scale. Deploying campus to cloud visibility requires scale from product, to portfolio, to design, to management, to support.

Additional Resources:

Ixia network visibility solutions

Ixia network packet brokers

Thanks to Ixia for the article

NTO Now Provides Twice the Network Visibility

Ixia is proud to announce that we are expanding one of the key capabilities in Ixia xStream platforms, “Double Your Ports,” to our Net Tool Optimizers (NTO) family of products. As of our 4.3 release, this capability to double the number of network and monitor inputs is now available on the NTO platform. If you are not familiar with Double Your Ports, it is a feature that allows you to add additional network or tool ports to your existing NTO by allowing different devices to share a single port. For example, if you have used all of the ports on your NTO but want to add a new tap, you can enable Double Your Ports so that a Net Optics Tap and a monitoring tool can share the same port, utilizing both the RX and TX sides of the port. This is how it works:

Standard Mode

In the standard mode, the ports will behave in a normal manner: when there is a link connection on the RX, the TX will operate. When the RX is not connected, the system assumes the TX link is also not connected (down).

Loopback Mode

When you designate a port to be loopback, the data egressing on the TX side will forward directly to the RX side of the same port. This functionality does not require a loopback cable to be plugged into the port. The packets will not transmit outside of the device even if a cable is connected.

Simplex Mode

When you designate a port to be in simplex mode, the port’s TX state is not dependent on the RX state. In the standard mode, when the RX side of the port goes down, the TX side is disabled. If you assign a port mode to simplex, the TX state is up when there is a link on the TX even when there is no link on the RX. You could use a simplex cable to connect a TX of port A to an RX of port B. If port A is in simplex mode, the TX will transmit even when the port A RX is not connected.

To “double your ports” you switch the port into simplex mode, then use simplex fiber cables and connect the TX fiber to a security or monitoring tool and the RX fiber to a tap or switch SPAN port. On NTO, the AFM ports such as the AFM 16 support simplex mode allowing you to have 32 connections per module: 16 network inputs and 16 monitor outputs simultaneously (with advanced functions on up to 16 of those connections). The Ixia xStream’s 24 ports can be used as 48 connections: 24 network inputs and 24 monitor outputs simultaneously.

The illustration below shows the RX and TX links of two AFM ports on the NTO running in simplex mode. The first port’s RX is receiving traffic from the Network Tap and the TX is transmitting to a monitoring tool.

The other port (right hand side on NTO) is interconnected to the Network Tap with its RX using a simplex cable whereas its TX is unused (dust-cap installed).

With any non-Ixia solution, this would have taken up three physical ports on the packet broker. With Ixia’s NTO and xStream packet brokers we are able to double up the traffic and save a port for this simple configuration, with room to add another monitoring tool where the dust plug is shown. If you expand this across many ports you can double your ports in the same space!

NTO Now Provides Twice the Network Visibility

Click here to learn more about Ixia’s Net Tool Optimizer family of products.

Additional Resources:

Ixia xStream

Ixia NTO solution

Ixia AFM

Solution Focus Category

Network Visibility

Thanks to Ixia for the article.

Improving Network Visibility – Part 4: Intelligent, Integrated, and Intuitive Management

In the three previous blogs in this series, I answered an often asked customer question – “What can really be done to improve network visibility?” – with discussions on data and packet conditioning, advanced filtering, and automated data center capability. In the fourth part of this blog series, I’ll reveal another set of features that can further improve network visibility and deliver even more verifiable benefits.

Too quickly summarize, this multi-part blog covers an in-depth view of various features that deliver true network visibility benefits. There are five fundamental feature sets that will be covered:

  • Data & Packet Conditioning
  • Advanced Packet Filtering
  • Automated Real Time Response Capability
  • Intelligent, Integrated, and Intuitive Management
  • Vertically-focused Solution Sets

When combined, these capabilities can “supercharge” your network. This is because the five categories of monitoring functionality work together to create a coherent group of features that can, and will, lift the veil of complexity. These feature sets need to be integrated, yet modular, so you can deploy them to attack the complexity. This will allow you to deliver the right data to your monitoring and security tools and ultimately solve your business problems.

This fourth blog focuses on intelligent, integrated, and intuitive management of your network monitoring switches – also known as network packet brokers (NPB). Management of your equipment is a key concern. If you spend too much time on managing equipment, you lose productivity. If you don’t have the capability to properly manage all the equipment facets, then you probably won’t derive the full value from your equipment.

When it comes to network packet brokers, the management of these devices should align to your specific needs. If you purchase the right NPBs, the management for these devices will be intelligent, integrated, and intuitive.

So, what do we mean by intelligent, integrated, and intuitive? The following are the definitions I use to describe these terms and how they can control/minimize complexity within an element management system (EMS):

Intuitive – This is involves a visual display of information. Particularly, an easy to read GUI that shows you your system, ports, and tool connections at a glance so you don’t waste time or miss things located on a myriad of other views.

Integrated – Everyone wants the option of “One Stop Shopping.” For NPBs, this means no separate executables required for basic configuration. Best-of-breed approaches often sound good, but the reality of integrating lots of disparate equipment can become a nightmare. You’ll want a monitoring switch that has already been integrated by the manufacturer with lots of different technologies. This gives you the flexibility you want without the headaches.

Intelligent – A system that is intelligent can handle most of the nitpicky details, which are usually the ones that take the most effort and reduce productivity the most. Some examples include: the need for a powerful filtering engine behind the scenes to prevent overlap filtering and eliminate the need to create filtering tables, auto-discovery, ability to respond to commands from external systems, and the ability to initiate actions based upon user defined threshold limits.

At the same time, scalability is the top technology concern of IT for network management products, according to the EMA report Network Management 2012: Megatrends in Technology, Organization and Process published in February 2012. A key component of being able to scale is the management capability. Your equipment management capability will throttle how well your system scales or doesn’t.

The management solution for a monitoring switch should be flexible but powerful enough to allow for growth as your business grows – it should be consistently part of the solution and not the problem and must, therefore, support current and potential future needs. The element management system needs to allow for your system growth either natively or through configuration change. There are some basic tiered levels of functionality that are needed. I’ve attempted to summarize these below but more details are available in a whitepaper.

Basic management needs (these features are needed for almost all deployments)

  • Centralized console – Single pane of glass interface so you can see your network at a glance
  • The ability to quickly and easily create new filters
  • An intuitive interface to easily visualize existing filters and their attributes
  • Remote access capability
  • Secure access mechanisms

Small deployments – Point solutions of individual network elements (NEs) (1 to 3) within a system

  • Simple but powerful GUI with a drag and drop interface
  • The ability to create and apply individual filters
  • Full FCAPS (fault, configuration, accounting, performance, security) capability from a single interface

Clustered solutions – Larger solutions for campuses or distributed environments with 4 to 6 NEs within a system

  • These systems need an EMS that can look at multiple monitoring switches from a single GUI
  • More points to control also requires minimal management and transmission overhead to reduce clutter on the network
  • Ability to create filter templates and libraries
  • Ability to apply filter templates to multiple NE’s

Large systems – Require an EMS for large scale NE control

  • Need an ability for bulk management of NE’s
  • Require a web-based (API) interface to existing NMS
  • Need the ability to apply a single template to multiple NE’s
  • Need role-based permissions (that offer the ability to set and forget filter attributes, lock down ports and configuration settings, “internal” multi-tenancy, security for “sensitive” applications like CALEA, and user directory integration – RADIUS, TACACS+, LDAP, Active Directory)
  • Usually need integration capabilities for reporting and trend analysis

Integrated solutions – Very large systems will require integration to an external NMS either directly or through EMS

  • Need Web-based interface (API) for integration to existing NMS and orchestration systems
  • Need standardized protocols that allow external access to monitoring switch information (SYSLOG, SNMP)
  • Require role-based permissions (as mentioned above)
  • Requires support for automation capabilities to allow integration to data center and central office automation initiatives
  • Must support integration capabilities for business Intelligence collection, trend analysis, and reporting

Statistics should be available within the NPB, as well as through the element management system, to provide business intelligence information. This information can be used for instantaneous information or captured for trend analysis. Most enterprises typically perform some trending analysis of the data network. This analysis would eventually lead to a filter deployment plan and then also a filter library that could be exported as a filter-only configuration file loadable through an EMS on other NPBs for routine diagnostic assessments.

More information on the Ixia Net Tool Optimizer (NTO) monitoring switch and advanced packet filtering is available on the Ixia website. In addition, we have the following resources available:

  • Building Scalability into Visibility Management
  • Best Practices for Building Scalable Visibility Architectures
  • Simplify Network Monitoring whitepaper

Additional Resources:

Ixia Net Tool Optimizer (NTO)

White Paper: Building Scalability into Visibility Management

Ixia Visibility Solutions

Thanks to Ixia for the article. 

How Not to Rollout New Ideas, or How I Learned to Love Testing

I was recently reading an article in TechCrunch titled “The Problem With The Internet Of Things,” where the author lamented how bad design or rollout of good ideas can kill promising markets. In his example, he discussed how turning on the lights in a room, through the Internet of Things (IoT), became a five step process rather than the simple one step process we currently use (the light switch).

This illustrates the problem between the grand idea, and the practicality of the market: it’s awesome to contemplate a future where exciting technology impacts our lives, but only if the realities of everyday use are taken into account. As he effectively state, “Smart home technology should work with the existing interfaces of households objects, not try to change how we use them.”

Part of the problem is that the IoT is still just a nebulous concept. Its everyday implications haven’t been worked out. What does it mean when all of our appliances, communications, and transportation are connected? How will they work together? How will we control and manage them? Details about how the users of exciting technology will actually participate in the experience is the actual driver of technology success. And too often, this aspect is glossed over or ignored.

And, once everything is connected, will those connections be a door for malware or hacktivists to bypass security?

Part of the solution to getting new technology to customers in a meaningful way, that is both a quality end user experience AND a profitable model for the provider, is network validation and optimization. Application performance and security resilience are key when rolling out, providing, integrating or securing new technology.

What do we mean by these terms? Well:

  • Application performance means we enable successful deployments of applications across our customers’ networks
  • Security resilience means we make sure customer networks are resilient to the growing security threats across the IT landscape

Companies deploying applications and network services—in a physical, virtual, or hybrid network configuration—need to do three things well:

  • Validate. Customers need to validate their network architecture to ensure they have a well-designed network, properly provisioned, with the right third party equipment to achieve their business goals.
  • Secure. Customers must secure their network performance against all the various threat scenarios—a threat list that grows daily and impacts their end users, brand, and profitability.

(Just over last Thanksgiving weekend, Sony Pictures was hacked and five of its upcoming pictures leaked online—with the prime suspect being North Korea!)

  • Optimize. Customers seek network optimization by obtaining solutions that give them 100% visibility into their traffic—eliminating blind spots. They must monitor applications traffic and receive real-time intelligence in order to ensure the network is performing as expected.

Ixia helps customers address these pain points, and achieve their networking goals every day, all over the world. This is the exciting part of our business.

When we discuss solutions with customers, no matter who they are— Bank of America, Visa, Apple, NTT—they all do three things the same way in their networks:

  • Design—Envision and plan the network that meets their business needs
  • Rollout—Deploy network upgrades or updated functionality
  • Operate—Keep the production network seamlessly providing a quality experience

These are the three big lifecycle stages for any network design, application rollout, security solution, or performance design. Achieving these milestones successfully requires three processes:

  • Validate—Test and confirm design meets expectations
  • Secure— Assess the performance and security in real-world threat scenarios
  • Optimize— Scale for performance, visibility, security, and expansion

So when it comes to new technology and new applications of that technology, we are in an amazing time—evidenced by the fact that nine billion devices will be connected to the Internet in 2018. Examples of this include Audio Video Bridging, Automotive Ethernet, Bring Your Own Apps (BYOA), etc. Ixia sees only huge potential. Ixia is a first line defense to creating the kind of quality customer experience that ensures satisfaction, brand excellence, and profitability.

Additional Resources:

Article: The Problem With The Internet Of Things

Ixia visibility solutions

Ixia security solutions

Thanks to Ixia for the article.